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Conclusions

Gene therapy e�ectiveness relies on AAV vectors 
engineered to deliver genes with precision. Phenotype-
guided design of these vectors is crucial for enhancing 
tissue speci�city, minimising immune responses, and 
optimising gene transduction, which are essential for 
targeted and safe therapeutic outcomes.

The aim of the study was to build a generative model to generate capsid mutations with a 
given phenotype.

The model was initially trained on a dataset focused on AAV viability phenotypes, leveraging 
variable regions (VR-VIII) ability to tolerate mutations. The main criterion for success of the 
model was to predict and generate new mutations that maintain viability.
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We developed a RL-based generation approach able to generate protein sequence inse�ions based on a given 
capsid phenotype. The exploitation/exploration dilemma is addressed, at the training level, by se�ing to 5 the 
number of allowed actions before evaluating the phenotype of the generated variant. 

Fu�her research will explore extending this approach to other phenotypes.
Collaborations with wet lab facilities are essential to validate the designed AAV capsids.

The main advantage of such approach is that it allows the generation of penotype-speci�c variants, resulting in an 
AI-driven procedure, instead testing for a huge number of random mutations.

WhiteLab Genomics is a pioneering in-silico 
company leveraging Artificial Intelligence to 
accelerate discovery and mitigate risks in early-
stage research and development pipelines 
exclusively within the field of genomic 
medicine. Founded in 2019, and backed by Y-
Combinator, WhiteLab stands at the 
convergence of biology and computer science.

In the results, we observe how the 
generated sequences, conditioned 
on specific phenotypic targets, 
explore previously uncharted 
regions of the sequence space. 
This is achieved by integrating a 
protein Language Model (pLM) 
with a Reinforcement Learning 
(RL) framework, where the RL 
agent optimises sequence 
generation towards a desired 
phenotype. The pLM provides a 
probabilistic model of the 
sequence structure, capturing 
both local and global 
dependencies, while the RL agent 
iteratively updates the model to 
maximise the phenotypic reward. 
The exploration of regions outside 
the training data indicates that the 
model is capable of generalising 
and proposing novel sequence 
variations that may lead to new 
phenotypic expressions, thus 
showcasing its potential for de 
novo design. This divergence from 
the training data distribution is a 
clear indicator of the model's 
capacity to expand the biological 
diversity of the sequences, a 
critical aspect for uncovering new, 
functionally relevant mutations.
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Target Preparation

Novel in silico Protocol for Small Molecule Discovery 
Enhancing Lipid Nanoparticle Targeting Specificity
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WhiteLab Genomics is a pioneering in-silico company 
leveraging Artificial Intelligence to accelerate discovery 
and mitigate risks in early-stage R&D pipelines 
exclusively within the field of genomic 
medicine.  Founded in 2019, and backed by Y-
Combinator, WhiteLab stands at the convergence of 
biology and computer science.

Lipid nanoparticles (LNPs) are a type of non-viral vectors able to deliver therapeutic payload directly to tissues or organs1. In silico approaches can 
be used to discover small molecules or peptides that will help functionalize the LNP to target receptors of interest, making it more specific and 
minimizing adverse effects2-3. The interest of our approach is twofold: (i) to provide a robust protocol minimizing in silico bias in a small molecule 
discovery context, (ii) to discover promising small molecules binding to our target of interest to enhance LNP specificity. In this study, the protocol 
was applied to an undisclosed target involved in a specific pathology.
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Hit Discovery
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This study showed a protocol relying on physics-based and deep learning algorithms to create an in-house score maximizing binding consensus in 
a relevant pocket space. It allows us to generate libraries of predicted good binders for any relevant receptor involved in a pathology of interest. 
The addition of simulations over time after the consensus algorithms adds a layer of robustness to our protocol, improving the confidence of our 
predictions. The next steps would be to mimic the hydrophobic behavior of the LNP-small molecules addressing for more in-depth analysis.
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• Predicting the affinity of peptides 
derived from an enriched large 
database using in house predictive 
machine learning models

• Docking and filtering of predicted 
good binders using various software

• Identifying the receptor of interest based on its tissue 
expression and accessibility at the cell surface

• Assessing the structural feasibility: qualitative 
experimental structure available, known binders, etc

• Analysis is crucial for understanding the receptor’s 
interactions and functionality under physiological 
conditions

Transmembrane domain

Cytoplasmic domain

7MYZ2

7WN81

2. Analyzing the 
binding site

1. Annotating the target receptor’s structure

• Impact: The workflow aims at enhancing AAV vector specificity, improving the precision and efficacy of gene therapy.
• Future Work: Further testing and optimization of identified peptide candidates for clinical applications are ongoing.   

• Performing molecular dynamic 
simulations of the receptor-
selected peptides complexes 

Macrocyclic 
peptides

generation

CD47

• Inserting the selected 
peptides in the AAV trimer 

• Evaluating the 
maintenance of the 
essential interactions with 
various methods

• Predicting the viability of 
the modified capsid with 
in-house patented models

AAV capsid binding prediction to the 
receptor of interest 

Macrocyclic 
peptides docking

Genomic medicines represent groundbreaking therapeutic approaches for treating diseases with limited therapeutic options by 
delivering genetic material directly to patient cells. Various vectors serve as delivery vehicles, including viral and non-viral 
vectors such as lipid nanoparticles (LNPs). Adeno-associated viruses (AAV) are particularly favored in genomic medicines due to 
their extensive tissue biodistribution, which allows them to target a broad range of diseases. However, this broad tropism can 
result in a lack of tissue specificity. Therefore, optimizing capsid structure is crucial for enhancing AAV specificity, selectivity, 
manufacturing efficiency, and reducing immunogenicity. Current AAV capsid engineering efforts aim to improve the vector 
delivery efficiency to target cells.
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3. Assessing the behavior in a 
solvated environment

• Converting the selected 
peptides into 
macrocycles

• Sampling multiple 
conformations 

• Restraining peptide 
conformations to mimic 
the AAV-inserted 
peptide behavior

Vector engineering  Ligand optimization

IXSXXXG
XXSRXXG
IXSXXXA
XXSAXXP 
RXAXCXP   ΔG

Target discovery Ligand-based drug discoveryReceptor analysis

Contact us Conclusion
Whitelabgx.com I bd@whitelabgx.com

ccolas@whitelabgx.com
dserillon@whitelabgx.com

/claire-c-colas
/bryan-dafniet
/dylan-serillon

About us

Optimizing AAV Vectors for Precision Gene Therapy: 
A Rational Design Approach
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Objectives
• Enhance AAV capsid specificity
• Improve delivery efficiency to 

target cells
• Maximize therapeutic potential

Accelerate
R&D by several years
35-40% faster

Strategy
• Design vectors that enhance capsid specificity for target receptors
• Leverage variable regions’ (e.g. VR-VIII) inherent ability to tolerate 

mutations and peptide insertions
• Develop a guided rational approach for peptide design

Increase 
Productivity of R&D resources
Multiplied by 4

Reduce 
Unnecessary experiment costs
25-30%

3D representation of 
an AAV capsid

Improve 
Pre-clinical success rate
20-30%
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WhiteLab Genomics is a pioneering in-silico
company leveraging Artificial Intelligence to
accelerate discovery and mitigate risks in early-
stage research and development pipelines
exclusively within the field of genomic
medicine. Founded in 2019, and backed by Y-
Combinator, WhiteLab stands at the convergence
of biology and computer science.

• Evaluating the stability of 
peptides in their binding 
site 

• Assessing the consistency 
of key interactions

• Detecting potential cryptic 
pockets, interactions, 
conformations
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